Training your own computer vision model
Posted: Thu Jul 10, 2025 10:42 am
The final tab of our Gradio demo allows you to export the image dataset in a format that can be loaded by Label Studio, an open-source tool for annotating data in preparation for machine learning tasks. In Label Studio, we can define labels we would like to apply to our dataset. For example, we might decide we’re interested in pulling out particular types of images from this collection. We can use Label Studio to create an annotated version of our dataset with these labels. This requires us to assign labels to images in our dataset with the correct labels. Although this process can take some time, it can be a useful way of further exploring a dataset and making sure your labels make sense.
With a labeled dataset, we need some way of training a model. For this, we can use AutoTrain. This tool allows you to train machine learning models without writing any code. Using this approach phone number library supports creation of a model trained on our dataset which uses the labels we are interested in. It’s beyond the scope of this post to cover all AutoTrain features, but this post provides a useful overview of how it works.
Next Steps
As mentioned in the introduction, you can explore the ARCH Image Dataset Explorer Demo yourself. If you know a bit of Python, you could also duplicate the Space and adapt or change the current functionality it supports for exploring the dataset.
Internet Archive and Hugging Face plan to organize a hands-on hackathon later this year focused on using open source machine learning tools from the Hugging Face ecosystem to work with web archives. The event will include building interfaces for web archive datasets, collaborative annotation, and training machine learning models. Please let us know if you are interested in participating by filling out this form.
With a labeled dataset, we need some way of training a model. For this, we can use AutoTrain. This tool allows you to train machine learning models without writing any code. Using this approach phone number library supports creation of a model trained on our dataset which uses the labels we are interested in. It’s beyond the scope of this post to cover all AutoTrain features, but this post provides a useful overview of how it works.
Next Steps
As mentioned in the introduction, you can explore the ARCH Image Dataset Explorer Demo yourself. If you know a bit of Python, you could also duplicate the Space and adapt or change the current functionality it supports for exploring the dataset.
Internet Archive and Hugging Face plan to organize a hands-on hackathon later this year focused on using open source machine learning tools from the Hugging Face ecosystem to work with web archives. The event will include building interfaces for web archive datasets, collaborative annotation, and training machine learning models. Please let us know if you are interested in participating by filling out this form.